

CodedVTR: Codebook-based Sparse Voxel TRansformer with Geometric Guidance

Tianchen Zhao

He Wang

Niansong Zhang

Li Yi*

Xuefei Ning

Yu Wang

* Corresponding Author

Background

- Transformers outperform CNN and achieve SOTA in many vision tasks
- Transformer's superiority:
 - Less inductive bias -> Better representation power

Performance of ImageNet1K Classification^[1]

Self-Attention could **approximate** Conv, And it is a **more generalized form** of Conv^[2]

[1] ImageNet Benchmark (Image Classification) | Papers With Code

[2] Cordonnier, J., Loukas, A., & Jaggi, M. (2020). On the Relationship between Self-Attention and Convolutional Layers. ArXiv, abs/1911.03584.

- Transformer's Problem: harder to optimize and generalize
 - Rely on large-scale pretraining, overfits when directly trained on smaller dataset
 - Slow convergence & sensitive to hyperparameters (LR, initialization, data-aug...)
- Solution: introduce domain-specific inductive bias

"When directly trained on the ImageNet, ViT yields modest accuracies of a few points below ResNets of comparable size "^[1]

> ViT^[1] requires large-scale pretraining to outperform ResNets

Swin Transformer^[2] uses **hierarchical window-based local** aggregation

Dosovitskiy, Alexey et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." ArXiv abs/2010.11929 (2021): n. pag.
Liu, Ze et al. "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows." 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021): 9992-10002.

Background

- Introducing transformer into 3D Domain: The generalization issue is aggravated
 - 3D Data (Sparse Voxel) has unique properties (sparse & irregular)
 - Relatively limited data scale

Dataset	Method (Model)		Params	mIOU
ScanNet	Convolution	Minkowski-M	7M	67.3%
		Minkowski-L	11M	72 1%
	Transformer	PointTransformer	6M	58.6% (-8.7%)
		VoTR (Mink-M)	7M	62.5% (-4.8%)
		VoTR (Mink-L)	11M	66.1% (-6.3%)
SemanticKITTI	Convolution	Minkowski-M	7M	58 <mark>.9%</mark>
		Minkowsk-L	11M	61.1%
	Transformer	VoTR (Mink-M) †	7M	56.5% (-2.4%)
		VoTR (Mink-L)	11M	58.2% (- <mark>2.9%</mark>)

Voxel's unique properties: sparse and irregular Simply employ transformer fails to outperform CNN

• Key: alleviate the generalization issue

• CodedVTR: introduce geometric-aware codebook

- Codebook-based attention
- Geometric-aware attention

Motivation

• The attention weight generation:

• Codebook-based attention: encode the attn-weight with codebook elements

$$f(x) \sim f_d(x) = \sum w_i \,\theta_i$$

- Codebook elements θ_i could be viewed as:
 - attention weight "Prototypes"
 - a set of basis that span a subspace
- Project the attention learning in the subspace
- Regularization helps generalization

Learn the subspace $f_d(x)$ of dim: $N(\Theta) < N(\Phi)$

• Codebook-based attention is an **intermediate state** of self-attention and convolution

Codebook Design

Experimental Results

• Results of Codebook Design

CodedVTR helps generalization

• 3D data's unique properties -> Geometric-aware attention

Sparsity & Varying geometric shape

Varying densities (outdoor)

- Geometric-aware attention
- Geo-shape: assign different geometric shapes for codebook elements
- Geo-guide: encourage attention to match the input's sparse pattern

Same convolution weight

Different input voxel sparse pattern

Different geometric shapes codebook-elements

- How to determine geometric shape?
 - Adopt k-means clustering to get 8 representative sparse pattern in 3 dilations

Clustering t-SNE Visualization

- How to adopt geometric guide?
 - Regularize the attention with "mismatch code"

- How to adopt geometric guide?
 - Regularize the attention with "mismatch code"

Experimental Results

Naïve self-attention (Uniform Attention Map)

Codebook-based self-attention (Similar attention map)

Geometric-aware self-attention (Meaningful attention map)

Dataset	Method (Model)		Params	mIOU
ScanNet	Convolution	Minkowski-M	7M	67.3%
		Minkowski-L	11M	72.4%
	Transformer	CodedVTR (Mink-M)	7M	68.8 %(+1.5%)
		CodedVTR (Mink-L)	11M	73.0 %(+0.6%)
SemanticKITTI	Convolution	Minkowski-M	7M	58.9%
		Minkowsk-L	11M	61.1%
		SPVCNN	8M	60.7%
	Transformer	CodedVTR (Mink-M)	7M	60.4 % (+0.5)
		CodedVTR (Mink-L)	11M	63.2 % (+2.1%)
		CodedVTR (SPVCNN)	8M	61.8 %(+1.1%)
Nuscenes	Convolution	Minkowski-M	7M	66.5%
		Minkowsk-L	7M	69.4%
	Transformer	CodedVTR (Mink-M)	7M	69.9 % (+3.4%)
		CodedVTR (Mink-L)	11M	72.5% (+3.1%)