
Motivation

• ❓: How to Adapt Transformer to 3D Domain?
• Transformer’s Property?
✅: Less inductive bias
✅: Better representation power
❌: Harder to generalize

• 3D Data’s Property?
- Irregular data structure
- Limited data scale
- Varying density & sparse pattern

🔑 Key: Alleviate the aggravated generalization issue with domain-
specific inductive bias
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• Generalization Issue of Transformer
• Transformer relies on large-scale pretraining / additional inductive bias to

outperform CNN. Recent studies attribute it to the Generalization Issue.

“ When directly trained on the ImageNet, ViT yields modest 
accuracies of a few points below ResNets of comparable size”[1]

(Plain 3D Transformer fails to outperform Convolution )

[1] Dosovitskiy, Alexey et al. “An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale.” ArXiv abs/2010.11929 (2021): n. pag.
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• Project the attention space into a
subspace spanned by codebook
“prototypes”

• Work as Regularization for better
Generalization

• Could be viewed as an intermediate state
between Convolution & Transformer
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• Consider 3D data’s unique properties:
- Unique geometric shape
- Varying densities

• Assign different geometric shape as
attention span for codebook elements

• Guide the attention learning by
encouraging the choice of codes with
matching sparse pattern

CodedVTR prevents the
“attention collapse”

CodedVTR consistently outperform Conv & Transformer
(CodedVTR is compatible with current sparse conv methods e.g., SPVCNN)

CodedVTR learns to choose
codes with matching sparse pattern

Ablation study: codebook size




