

CodedVTR: Codebook-based Sparse Voxel Transformer with Geometric Guidance

Motivation

- **i** : How to Adapt Transformer to 3D Domain?
- Transformer's Property? **S**: Less inductive bias Setter representation power X: Harder to generalize
- 3D Data's Property? - Irregular data structure
- Limited data scale
- Varying density & sparse patterr

Key: Alleviate the aggravated generalization issue with domainspecific inductive bias

- Generalization Issue of Transformer
- Transformer relies on large-scale pretraining / additional inductive bias to outperform CNN. Recent studies attribute it to the Generalization Issue.

"When directly trained on the ImageNet, ViT yields modest accuracies of a few points below ResNets of comparable size"^[1]

Dataset	Meth	Params		
	Convolution	Minkowski-M	7M	Γ
ScanNet	Convolution	Minkowski-L	11M	
	Transformer	PointTransformer	6M	
		VoTR (Mink-M)	7M	
		VoTR (Mink-L)	11M	
	Convolution	Minkowski-M	7M	Γ
SemanticKITTI	Convolution	Minkowsk-L	11M	
	Transformer	VoTR (Mink-M) †	7M	Γ
		VoTR (Mink-L)	11M	

(Plain 3D Transformer fails to outperform Convolution)

[1] Dosovitskiy, Alexey et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." ArXiv abs/2010.11929 (2021): n. pag.

Zhao Tianchen¹, Zhang Niansong¹, Ning Xuefei¹, Wang He², Yi Li^{1,3*}, Wang Yu¹ 1 Tsinghua University 2 Peking University

Dataset	Method (Model)		Param	mIOU
ScanNet	Convolution	Minkowski-M [18]	7M	67.3%
		Minkowski-L [3]	11M	72.4%
	Transformer	PointTransformer [30]†	6M	58.6%
		VoTR (Mink-M) [17]†	7M	62.5%
		VoTR (Mink-L) [17]†	11M	66.1%
		CodedVTR (Mink-M)	7M	68.8 %
		CodedVTR (Mink-L)	11M	73.0 %
SemanticKITTI	Convolution	Minkowski-M [21]	7M	58.9%
		Minkowsk-L [21]	11M	61.1%
		SPVCNN [21]	8M	60.7%
	Transformer	VoTR (Mink-M) [17] †	7M	56.5%
		VoTR (Mink-L) [17]†	11M	58.2%
		CodedVTR (Mink-M)	7M	60.4%
		CodedVTR (Mink-L)	11M	63.2%
		CodedVTR (SPVCNN)	8M	61.8%
Nuscenes	Convolution	Minkowski-M [21]	7M	66.5%
		Minkowsk-L [21]	11M	69.4%
	Transformer	CodedVTR (Mink-M)	7M	69.9 %
		CodedVTR (Mink-L)	11M	72.5%

CodedVTR consistently outperform Conv & Transformer

(CodedVTR is compatible with current sparse conv methods e.g., SPVCNN)

Codebook Design		mIoII	
D	М	miou	
1	1	57.1%	
3	1	58.5%	
4	1	55.3%	
3 (RS)	8 (RS)	54.2%	
3	8	60.4%	
3	16	58.1%	

Ablation study: codebook size

CodedVTR prevents the "attention collapse"